N2O influence on isotopic measurements of atmospheric CO2.
نویسندگان
چکیده
In spite of extensive efforts, even the most experienced laboratories dealing with isotopic measurements of atmospheric CO2 still suffer from poor inter-laboratory consistency. One of the complicating factors of these isotope measurements is the presence of N2O, giving rise to mass overlap in the isotope ratio mass spectrometer (IRMS). The aim of the experiment reported here has been twofold: first, the re-establishment of the correction for 'mechanical' interference of N2O in the IRMS, along with its variability and drift, and the best way to quantitatively determine the correction factors. Second, an investigation into secondary effects, i.e. the influence of N2O admitted with the CO2 sample on the "cross contamination" between sample and (pure CO2) working gas. To make the suspected effects better detectable, isotopically enriched CO2 gas with different concentrations of N2O has been measured for the first time. No evidence of secondary effects was observed, from which we conclude that N2O is not a major player in the inter-laboratory consistency problems. Still, we also found that the determination of the 'mechanical' N2O correction needs to be very carefully determined for each individual IRMS, and should be periodically re-determined. We show that the determination of the correction should be performed using CO2/N2O mixtures with concentration ratios around that of the atmosphere, as the extrapolation from pure gas end member behaviour will give erroneous results due to non-linearities. For our IRMS, a VG SIRA series II, we find a correction of 0.23 per thousand for delta45CO2 and 0.30 per thousand for delta46CO2 of atmospheric samples, (with 0.85 per thousand mixing ratio). This implies that the relative ionisation efficiency (E) value associated with this machine is 0.75.
منابع مشابه
Development of a spectroscopic technique for continuous online monitoring of oxygen and site-specific nitrogen isotopic composition of atmospheric nitrous oxide.
Nitrous oxide is an important greenhouse gas and ozone-depleting-substance. Its sources are diffuse and poorly characterized, complicating efforts to understand anthropogenic impacts and develop mitigation policies. Online, spectroscopic analysis of N2O isotopic composition can provide continuous measurements at high time resolution, giving new insight into N2O sources, sinks, and chemistry. We...
متن کاملEvidence for O-atom exchange in the O(D) + N2O reaction as the source of mass-independent isotopic fractionation in atmospheric N2O
[1] Recent experiments have shown that in the oxygen isotopic exchange reaction for O(D) + CO2 the elastic channel is approximately 50% that of the inelastic channel [Perri et al., 2003]. We propose an analogous oxygen atom exchange reaction for the isoelectronic O(D) + N2O system to explain the mass-independent isotopic fractionation (MIF) in atmospheric N2O. We apply quantum chemical methods ...
متن کاملSources of the oxygen isotopic anomaly in atmospheric N2O
[1] One-dimensional and two-dimensional models are used to investigate the isotopic composition of atmospheric N2O. The sources of N2O in the atmosphere are based on recent laboratory measurements of the N2O quantum yield in the mixture of O3/O2/N2 (Estupiñán et al., 2002). Two recently proposed pathways (Estupiñán et al., 2002; Prasad, 2005) are evaluated in the model. We find that the new atm...
متن کاملTrends and seasonal cycles in the isotopic composition of nitrous oxide since 1940
The atmospheric nitrous oxide mixing ratio has increased by 20% since 1750 (ref. 1). Given that nitrous oxide is both a long-lived greenhouse gas2 and a stratospheric ozonedepleting substance3, this increase is of global concern. However, the magnitude and geographic distribution of nitrous oxide sources, and how they have changed over time, is uncertain4,5. A key unknown is the influence of th...
متن کاملNitrous oxide (N2O) isotopic composition in the troposphere: instrumentation, observations at Mace Head, Ireland, and regional modeling
Nitrous oxide (N2O) is a significant greenhouse gas and main contributor to stratospheric ozone destruction. Surface measurements of N2O mole fractions have been used to attribute source and sink strengths, but large uncertainties remain. Stable isotopic ratios of N2O (here considered NNO, NNO, NNO, relative to the abundant NNO) linked to source and sink isotopic signatures can provide addition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Rapid communications in mass spectrometry : RCM
دوره 18 16 شماره
صفحات -
تاریخ انتشار 2004